14. M. Salve, A. Mandal, K. Amreen, P.K. Pattnaik and S. Goel, Greenly synthesized silver na
noparticles for supercapacitor and electrochemical sensing applications in a 3D printed
microfluidic platform, Microchemical Journal 157 (2020). DOI: 10.1016/j.microc.2020.104973.
15. R. Wang, Y. Xu, T. Sors, J. Irudayaraj, W. Ren and R. Wang, Impedimetric detection of
bacteria by using a microfluidic chip and silver nanoparticle based signal enhancement,
Microchimica Acta 185 (2018), p. 184.
16. M. Kamruzzaman, A.M. Alam, S.H. Lee and T.D. Dang, Chemiluminescence microfluidic
system on a chip to determine vitamin B1 using platinum nanoparticles triggered luminol-
AgNO3 reaction, Sensors and Actuators, B: Chemical 185 (2013), pp. 301–308.
17. M. Medina-Sánchez, C.C. Mayorga-Martinez, T. Watanabe, T.A. Ivandini, Y. Honda, F. Pino
et al., Microfluidic platform for environmental contaminants sensing and degradation based
on boron-doped diamond electrodes, Biosensors and Bioelectronics 75 (2016), pp. 365–374.
18. J. Zheng, M. Zhu, J. Kong, Z. Li, J. Jiang, Y. Xi et al., Microfluidic paper-based analytical
device by using Pt nanoparticles as highly active peroxidase mimic for simultaneous de
tection of glucose and uric acid with use of a smartphone, Talanta 237 (2022), pp. 122954.
19. N.S. Ridhuan, K. Abdul Razak, Z. Lockman and A. Abdul Aziz, Structural and morphology
of ZnO nanorods synthesized using ZnO seeded growth hydrothermal method and its
properties as UV sensing, Plos One 7 (2012), pp. e50405.
20. A. Bobkov, A. Varezhnikov, I. Plugin, F.S. Fedorov, V. Trouillet, U. Geckle et al., The mul
tisensor array based on grown-on-chip zinc oxide nanorod network for selective dis
crimination of alcohol vapors at sub-ppm range, Sensors (Switzerland) 19 (2019).
21. X. Pan and X. Zhao, Ultra-high sensitivity zinc oxide nanocombs for On-Chip room tem
perature carbon monoxide sensing, Sensors 15 (2015), pp. 8919–8930.
22. Y. Chen, P. Xu, T. Xu, D. Zheng and X. Li, ZnO-nanowire size effect induced ultra-high
sensing response to ppb-level H2S, Sensors and Actuators B: Chemical 240 (2017), pp. 264–272.
23. C.A. Proença, T.A. Baldo, T.A. Freitas, E.M. Materón, A. Wong, A.A. Durán et al., Novel
enzyme-free immunomagnetic microfluidic device based on Co0.25Zn0.75Fe2O4 for cancer
biomarker detection, Analytica Chimica Acta 1071 (2019), pp. 59–69.
24. C.F. Jofre, M. Regiart, M.A. Fernández-Baldo, M. Bertotti, J. Raba and G.A. Messina,
Electrochemical microfluidic immunosensor based on TES-AuNPs@Fe3O4 and CMK-8 for
IgG anti-Toxocara canis determination, Analytica Chimica Acta 1096 (2020), pp. 120–129.
25. L. Xue, N. Jin, R. Guo, S. Wang, W. Qi, Y. Liu et al., Microfluidic colorimetric biosensors
based on MnO2Nanozymes and convergence-divergence spiral micromixers for rapid and
sensitive detection of salmonella, ACS Sensors 6 (2021), pp. 2883–2892.
26. N. Singh, M.A. Ali, P. Rai, A. Sharma, B.D. Malhotra and R. John, Microporous nano
composite enabled microfluidic biochip for cardiac biomarker detection, ACS Applied
Materials and Interfaces 9 (2017), pp. 33576–33588.
27. L. Hao, L. Xue, F. Huang, G. Cai, W. Qi, M. Zhang et al., A microfluidic biosensor based on
magnetic nanoparticle separation, quantum dots labeling and mno2 nanoflower amplification
for rapid and sensitive detection of salmonella typhimurium, Micromachines 11 (2020), p. 281.
28. D. Maiti, X. Tong, X. Mou and K. Yang, Carbon-based nanomaterials for biomedical appli
cations: A recent study, Frontiers in Pharmacology 9 (2018), p. 1401.
29. W. Zhang, Y. Du and M.L. Wang, On-chip highly sensitive saliva glucose sensing using
multilayer films composed of single-walled carbon nanotubes, gold nanoparticles, and
glucose oxidase, Sensing and Bio-Sensing Research 4 (2015), pp. 96–102.
30. R. Chand and S. Neethirajan, Microfluidic platform integrated with graphene-gold nano-
composite aptasensor for one-step detection of norovirus, Biosensors and Bioelectronics 98
(2017), pp. 47–53.
31. M.A. Ali, K. Mondal, Y. Wang, H. Jiang, N.K. Mahal, M.J. Castellano et al., In situ integration
of graphene foam-titanium nitride based bio-scaffolds and microfluidic structures for soil
nutrient sensors, Lab on a Chip 17 (2017), pp. 274–285.
32. M.A. Ali, K. Mondal, Y. Jiao, S. Oren, Z. Xu, A. Sharma et al., Microfluidic immuno-biochip for
detection of breast cancer biomarkers using hierarchical composite of porous graphene and ti
tanium dioxide nanofibers, ACS Applied Materials and Interfaces 8 (2016), pp. 20570–20582.
90
Bioelectronics